\sim \sim

ASYMMETRIC INDUCTION IN **THE [2,3]WITTIG REARRANGEMENT OF ALLYLIC ETHERS WITH A CHIRAL SUBSTITUENT. NEW ENTRIES TO STEREOCONTROL OVER THREE CONTIGUOUS CHIRAL CENTERS**

Ei-ichi Nakai and Takeshi Nakai*

Department of Chemical Technology, Tokyo Institute of Technology. Meguro. Tokyo 152, Japan

Summary: The [2,3]Wittig rearrangements of allylic ethers with a chiral substituent at the y-positions, derived from (S)-lactaldehyde and (l7)-glyceraldehyde, are shown to exhibit an extremely high asymmetric induction, together with a high simple diastereoselectivity.

Recently the asymmetric [2,3]Wittig rearrangement termed "asymmetric transmission type" (eq 1) has widely been utilized for asymmetric synthesis of acyclic frameworks. 1 In an effort to further enhance the potential of the [2,3]Wittig technology, we have now investigated a conceptually new type of asymmetric version, termed "asymmetric induction type" (eq 2). wherein an allylic ether with a chiral substituent at the y-position is employed as the substrate. A major stereochemical problem here is associated with asymmetric induction by the chiral substituent (diastereofacial selection), which remains largely unexplored.2 Herein we report that the [2.3]Wittig rearrangement of the allylic ethers of type 1 and 2 exhibits an extremely high level of both asymmetric induction and simple diastereoselectivity, thus providing new entries to stereocontrol over the three contiguous chiral centers.

In **this work, we selected the acetylenic groups as the key G group based on our previous observation that such groups generally provide a high degree of** simple diastereoselection in the [2,3]Wittig processes.³ First, (<u>Z</u>)- and (<u>E</u>)**were selectively prepared from (S)-lactaldehyde via the usual sequence 4 and each was subjected to the carbanion rearrangement under the standard conditions [c-8uLi (1.2 equiv). THF, -78'C. 5 h] (eq 4). The stereochemistry of the products was deduced from 500 MHz NMR spectra of their acetonides prepared by usual desilylation/acetonidation sequence. The most informative are the coupling constants as exemplified below. The results thus observed are shown in Table 1 (entries l-3).**

The most striking feature of this rearrangement is the remarkably high asymmetric induction (>95% 4,5-syn) observed with (z)-1, along with an extremely high 3,4-anti diastereoselectivity. Also notable is that (E)-I_ shows the opposite *sense* **of asymmteric induction, although the degrees are lowered (entry 2 and 3),**

Second, the $\underline{Z}/\underline{E}$ pairs of $\underline{2a}$ and $\underline{2b}$ were selectively prepared from (\underline{R}) **glyceraldehyde acetonide 5 and each was subjected to the carbanion rearrangement as described above (eq 4). The stereochemical assignments of the major products (7~ and 8a) were made through HPLC6 comparisons of their -** derivative (11) with the authentic samples independently prepared from the **stereochemically-defined Claisen products (12)7 (eq 5).**

Entry	$Substrate^d$	%Yield ^b	Product Ratio ^C							
			$\overline{3}$	~ 100	$\frac{4}{1}$:		$5 \cdot$		6	
1	$(2)-1$ (97%)	77	94	\mathbf{r}	\blacksquare	$\sim 10^{-11}$	4	\mathcal{I}	$\overline{1}$	
\overline{c}	$(E)-1$ (97%)	93	10 [°]	$\sim 10^6$	21	\mathbf{r}	50		. 19	
3 ^d	$(E) - 1$ (97%)	74			3:3:87:				$\overline{7}$	
					7 : 8 : 9 :				10	
4	$(2)-2a(100\%)$	77	$>99^{\circ}$:		$ \cdot$:		$\overline{}$	\sim 1.		
5	$(\underline{7}) - 2\underline{b}$ (100%)	62	98	~ 10		\sim 100	$\overline{}$	\sim 100	2	
6	$(E) - 2a$ (100%)	86	12 :		81	Carl Corp.	3 ³	\sim 1.	4	
7	$(E)-2b(100\%)$	73	7 ⁷	\sim 10 \pm	77	\sim 10	16	\sim 1.		

Table 1. The [2,3]Wittig Rearrangement of 1 and 2

a **The number in the parenthesis indicates the geometric purity of the substrate (determined by** ¹³C NMR assay). $\frac{b}{c}$ Refers to isolated yield. $\frac{c}{c}$ Determined by capillary GLC (XE 60, 30 m). $\frac{d}{dx}$ Run in THF-HMPA (4:1) with LDA (1.2 equiv). $\frac{e}{x}$ [a] $\frac{18^{\circ}}{h}$ -16.2° (c 1.02, CHC1₃).

Table 1 (entries 4-7) shows the results thus observed. Again, a remarkably high asymmetric induction $(4, 5-syn)$ is observed with $(2)-2a$ and 2b, together **with an extremely high 3,4-anti diastereoselectivity (enties 4 and 5). Another interesting finding is that the (E)-counterparts exhibit the same sense of asymmetric induction, along with the opposite sense of simple diastereoselection (3,4-syn). although the degrees are lowered.**

The high asymmetric induction observed in this work are of mechanistic and synthetic interest. While the high z + 3,4-anti diastereo-selectivities are just what we anticipate from previous works, ^{1, 3} the Z \rightarrow 4, 5-syn diastereo**facial selections can be visualized by the transition state A and B. The oxysubstituents at the chiral centers are perpendicular to the plane of the double bond to avoid the allylic 1,3-repulsion8 and the cabanion attacks preferentially from the opposite site to the oxy-substituent, thus leading to the high 4,5-syn selection.'**

In summary, we have demonstrated that the [2,3]Wittig rearrangements of the allylic ethers of type 1 and 2 provide an extremely high level of asymmetric induction, together with a high simple diastereoselectivity. Thus, the high degree of stereocontrol. coupled with the unique multi-functionality of the products, makes the present asymmetric version an attractive method for stereo-control over the three contiguous chiral centers. Applications of this methodology in natural product synthesis are now in progress in our laboratory.

Referances and Notes

- I> **Review: T. Nakai and K. Mikami, Chem. Rev., 86. 885 (1986).**
- 2) **After completion of this work, R. Bruckner and H. Priepke [Angew. Chem. Int. Ed. Engl., 27, 278 (1988)] have reported a similar type of asymmetric [2,3]Wittig variants of the glyceraldehyde-derived allylic ethers (G = H and C02Me) which provide a high asymmetric induction. though the yield of the latter is low (40%).**
- **3) T. Nakai, K. Mikami, S. Taya. and Y. Fujita. J. Am. Chem. Sot., 103, 6492 (1982). K. Mikami, K. Azuma, and T. Nakai, Tetrahedron, 40, 2303 (1984).**
- **4)** <code>Scheme I outlines the synthetic sequences for (<u>Z</u>)- and (<u>E</u>)-<u>1</u> from the IHP-protect</code> lactaldehyde (<u>i</u>). The conversions of i to the (Z)- or (E)-ii were made following the **Sharpless procedures: T. Katsuki. A. W. M. Lee, P. Ma, V. S. Martin. S. Masamune. K. B. Sharpless. D. Tuddenham. F. J. Walker, J. Org. Chem.. 47. 1373 (1982).**

Scheme 1

 $\frac{a}{2}$ CBr₄/Zn/PPh₃ ; $\frac{b}{2}$ <u>n</u>-BuLi/ClCO₂CH₃ ; $\frac{c}{2}$ H₂/Lindlar's cat. ; $\frac{d}{2}$ DIBAL-H ; J? **aq.NaOH/CH=CCH2Br/TBAI(cat.)** : f **TBSCl/imidazole** ; 9 **c-BuLi/TMSCl** ; $\frac{1}{2}$ (EtO)₂P(O)CH₂CO₂Et/NaH

- **5) The synthetic sequences are essentially the same as outlined in Scheme 1.**
- **6) Column** : **Zorbax** SIL ; **Solvent** : **hexane/AcOEt (19** : **1).**
- 7) J. K. Cha and S. C. Lewis, Tetrahedron Lett., <u>25</u>, 5263 (1984). The stereochemical determ nations of 7b-10b were made based on their GLC similarities to those of 7a-10a.
- **8) J. K. Lna, W. J. Christ, Y. Kishi, Tetrahedron, <u>40</u>, 2247 (1984).**
- **9) For a similar, more detailed mechanistic argument, see ref. 2.**

(Received in Japan 11 July 1988)