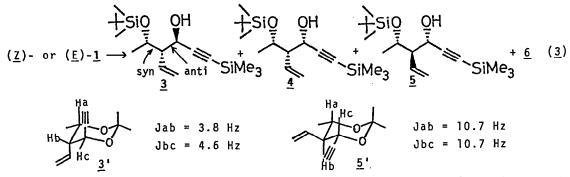
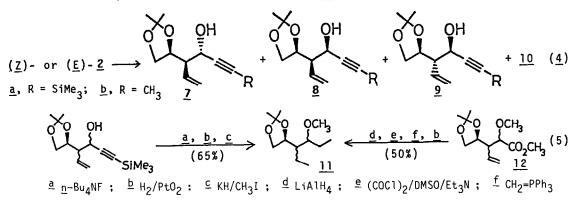

ASYMMETRIC INDUCTION IN THE [2,3]WITTIG REARRANGEMENT OF ALLYLIC ETHERS WITH A CHIRAL SUBSTITUENT. NEW ENTRIES TO STEREOCONTROL OVER THREE CONTIGUOUS CHIRAL CENTERS

Ei-ichi Nakai and Takeshi Nakai^{*}


Department of Chemical Technology, Tokyo Institute of Technology, Meguro, Tokyo 152, Japan

<u>Summary</u>: The [2,3]Wittig rearrangements of allylic ethers with a chiral substituent at the γ -positions, derived from (<u>S</u>)-lactaldehyde and (<u>R</u>)-glyceraldehyde, are shown to exhibit an extremely high asymmetric induction, together with a high simple diastereoselectivity.

Recently the asymmetric [2,3]Wittig rearrangement termed "asymmetric transmission type" (eq 1) has widely been utilized for asymmetric synthesis of acyclic frameworks.¹ In an effort to further enhance the potential of the [2,3]Wittig technology, we have now investigated a conceptually new type of asymmetric version, termed "asymmetric induction type" (eq 2), wherein an allylic ether with a chiral substituent at the γ -position is employed as the substrate. A major stereochemical problem here is associated with asymmetric induction by the chiral substituent (diastereofacial selection), which remains largely unexplored.² Herein we report that the [2,3]Wittig rearrangement of the allylic ethers of type <u>1</u> and <u>2</u> exhibits an extremely high level of <u>both</u> asymmetric induction and simple diastereoselectivity, thus providing new entries to stereocontrol over the three contiguous chiral centers.



In this work, we selected the acetylenic groups as the key G group based on our previous observation that such groups generally provide a high degree of simple diastereoselection in the [2,3]Wittig processes.³ First, (\underline{Z})- and (\underline{E})- $\underline{1}$ were selectively prepared from (\underline{S})-lactaldehyde via the usual sequence⁴ and each was subjected to the carbanion rearrangement under the standard conditions [\underline{n} -BuLi (1.2 equiv), THF, -78°C, 5 h] (eq 4). The stereochemistry of the products was deduced from 500 MHz NMR spectra of their acetonides prepared by usual desilylation/acetonidation sequence. The most informative are the coupling constants as exemplified below. The results thus observed are shown in Table 1 (entries 1-3).

The most striking feature of this rearrangement is the remarkably high asymmetric induction (>95% 4,5-syn) observed with (\underline{Z})- $\underline{1}$, along with an extremely high 3,4-anti diastereoselectivity. Also notable is that (\underline{E})- $\underline{1}$ shows the opposite sense of asymmetric induction, although the degrees are lowered (entry 2 and 3).

Second, the $\underline{Z}/\underline{E}$ pairs of $\underline{2a}$ and $\underline{2b}$ were selectively prepared from (\underline{R}) glyceraldehyde acetonide⁵ and each was subjected to the carbanion rearrangement as described above (eq 4). The stereochemical assignments of the major products ($\underline{7a}$ and $\underline{8a}$) were made through HPLC⁶ comparisons of their derivative (<u>11</u>) with the authentic samples independently prepared from the stereochemically-defined Claisen products (<u>12</u>)⁷ (eq 5).

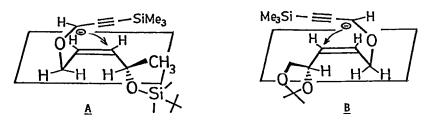
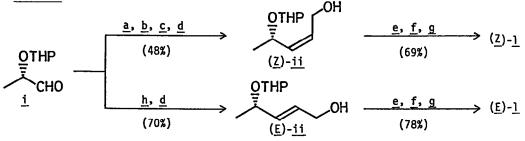

<u>Entry</u>	<u>Substrate</u> ^a	%Yield≞		Product			<u>Ratio^C</u>		
			<u>3</u>	:	<u>4</u>	:	<u>5</u>	:	<u>6</u>
1	(<u>Z</u>)- <u>1</u> (97%)	77	94	:	1	:	4	:	1
2	(<u>E</u>)- <u>1</u> (97%)	93	10	:	21	:	50	:	19
3 <u>d</u>	(<u>E</u>)- <u>1</u> (97%)	7 4	3	:	3	:	87	:	7
			<u></u>	:	<u>8</u>	:	<u>9</u>	:	<u>10</u>
4	(<u>Z</u>)- <u>2a</u> (100%)	77	> 9 9 e	:	-	:	-	:	-
5	(<u>Z</u>)- <u>2b</u> (100%)	6 2	98	:	-	:	-	:	2
6	(<u>E</u>)- <u>2</u> a (100%)	86	12	:	81	:	3	:	4
7	(<u>E</u>)- <u>2b</u> (100%)	73	7	:	77	:	16	:	-

Table 1. The [2,3]Wittig Rearrangement of <u>1</u> and <u>2</u>

 $\frac{a}{2}$ The number in the parenthesis indicates the geometric purity of the substrate (determined by 13 C NMR assay). $\frac{b}{2}$ Refers to isolated yield. $\stackrel{c}{=}$ Determined by capillary GLC (XE 60, 30 m). $\frac{d}{2}$ Run in THF-HMPA (4:1) with LDA (1.2 equiv). $\stackrel{e}{=}$ [**a**] $_{D}^{18^{\circ}}$ -16.2° (<u>c</u> 1.02, CHC1₃).

Table 1 (entries 4-7) shows the results thus observed. Again, a remarkably high asymmetric induction (4,5-syn) is observed with (\underline{Z})- $\underline{2a}$ and $\underline{2b}$, together with an extremely high 3,4-anti diastereoselectivity (enties 4 and 5). Another interesting finding is that the (\underline{E})-counterparts exhibit the same sense of asymmetric induction, along with the opposite sense of simple diastereoselection (3,4-syn), although the degrees are lowered.

The high asymmetric induction observed in this work are of mechanistic and synthetic interest. While the high $\underline{Z} \rightarrow 3,4$ -anti diastereo-selectivities are just what we anticipate from previous works, ^{1,3} the $\underline{Z} \rightarrow 4,5$ -syn diastereo-facial selections can be visualized by the transition state \underline{A} and \underline{B} . The oxy-substituents at the chiral centers are perpendicular to the plane of the double bond to avoid the allylic 1,3-repulsion⁸ and the cabanion attacks preferentially from the opposite site to the oxy-substituent, thus leading to the high 4,5-syn selection.⁹



In summary, we have demonstrated that the [2,3]Wittig rearrangements of the allylic ethers of type <u>1</u> and <u>2</u> provide an extremely high level of asymmetric induction, together with a high simple diastereoselectivity. Thus, the high degree of stereocontrol, coupled with the unique multi-functionality of the products, makes the present asymmetric version an attractive method for stereo-control over the three contiguous chiral centers. Applications of this methodology in natural product synthesis are now in progress in our laboratory.

Referances and Notes

- 1) Review; T. Nakai and K. Mikami, Chem. Rev., <u>86</u>, 885 (1986).
- 2) After completion of this work, R. Bruckner and H. Priepke [Angew. Chem. Int. Ed. Engl., <u>27</u>, 278 (1988)] have reported a similar type of asymmetric [2,3]Wittig variants of the glyceraldehyde-derived allylic ethers (G = H and CO₂Me) which provide a high asymmetric induction, though the yield of the latter is low (40%).
- T. Nakai, K. Mikami, S. Taya, and Y. Fujita, J. Am. Chem. Soc., <u>103</u>, 6492 (1982).
 K. Mikami, K. Azuma, and T. Nakai, Tetrahedron, <u>40</u>, 2303 (1984).
- 4) Scheme 1 outlines the synthetic sequences for (<u>Z</u>)- and (<u>E</u>)-<u>1</u> from the THP-protected lactaldehyde (<u>i</u>). The conversions of <u>i</u> to the (<u>Z</u>)- or (<u>E</u>)-<u>ii</u> were made following the Sharpless procedures: T. Katsuki, A. W. M. Lee, P. Ma, V. S. Martin, S. Masamune, K. B. Sharpless, D. Tuddenham, F. J. Walker, J. Org. Chem., <u>47</u>, 1373 (1982).

<u>Scheme 1</u>

^a CBr₄/Zn/PPh₃ ; ^b <u>n</u>-BuLi/ClCO₂CH₃ ; ^c H₂/Lindlar's cat. ; ^d DIBAL-H ; ^e aq.NaOH/CH=CCH₂Br/TBAI(cat.) ; ^f TBSCl/imidazole ; ^g <u>n</u>-BuLi/TMSCl ; ⁱ (EtO)₂P(O)CH₂CO₂Et/NaH

- 5) The synthetic sequences are essentially the same as outlined in Scheme 1.
- 6) Column : Zorbax SIL ; Solvent : hexane/AcOEt (19 : 1).
- 7) J. K. Cha and S. C. Lewis, Tetrahedron Lett., <u>25</u>, 5263 (1984). The stereochemical determinations of <u>7b-10b</u> were made based on their GLC similarities to those of <u>7a-10a</u>.
- 8) J. K. Cha, W. J. Christ, Y. Kishi, Tetrahedron, <u>40</u>, 2247 (1984).
- 9) For a similar, more detailed mechanistic argument, see ref. 2.

(Received in Japan 11 July 1988)